Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 5. Distributions of Functions of Random Variables

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Let X be a random variables of the continuous type. If we consider a function of X, say $Y=u(X)$, then Y must also be a random variable that has its own distribution. If we can find its distribution function, say,

$$
G(y)=\mathbb{P}(Y \leq y)=\mathbb{P}(u(X) \leq y),
$$

then its pdf is given by $g(y)=G^{\prime}(y)$.

Example 5.1-1 Let X have a gamma distribution with pdf

$$
f(x)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x / \theta}, \quad 0<x<\infty
$$

where $\alpha>0, \theta>0$. Let $Y=e^{X}$, so that the support of Y is $1<y<\infty$. For each y in the support, the distribution function of Y is

$$
G(y)=\mathbb{P}(Y \leq y)=\mathbb{P}\left(e^{X} \leq y\right)=\mathbb{P}(X \leq \ln y)
$$

That is,

$$
G(y)=\int_{0}^{\ln y} \frac{1}{\Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x / \theta} d x
$$

and thus the pdf $g(y)=G^{\prime}(y)$ of Y is

$$
g(y)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}}(\ln y)^{\alpha-1} e^{-(\ln y) / \theta}\left(\frac{1}{y}\right), \quad 1<y<\infty .
$$

Equivalently, we have

$$
g(y)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} \frac{(\ln y)^{\alpha-1}}{y^{1+1 / \theta}} \quad 1<y<\infty
$$

which is called a loggamma pdf.

Determination of $g(y)$ from $f(x)$

Let X be a continuous r.v. with pdf $f(x)$. If the transformation $y=u(x)$ is one-to-one and has the inverse transformation

$$
x=u^{-1}(y)=v(y)
$$

then the pdf of Y is given by

$$
g(y)=f(v(y))\left|v^{\prime}(y)\right|, \quad y \in S_{y},
$$

where S_{y} is the support of Y.

Example 5.1-2 Let $Y=2 X+3$. Find the pdf of Y if X is a uniform r.v. over $(-1,2)$.
Ans: $g(y)= \begin{cases}\frac{1}{6}, & \text { if } 1<y<7, \\ 0, & \text { otherwise } .\end{cases}$

Example 5.1-3 Let X have the pdf $f(x)=x e^{-x^{2} / 2}, 0<x<\infty$. Find the pdf of $Y=X^{2}$.
Ans: $g(y)=\cdots$

Here are some examples when the transformation $Y=u(X)$ is not one-to-one.

Example 5.1-4 Let $Y=X^{2}$. Find the pdf of Y when the distribution of X is $N(0,1)$.
Ans. $g(y)=\frac{1}{\sqrt{2 \pi y}} \exp (-y / 2), \quad 0<y<\infty$.

Example 5.1-5 Let $Y=X^{2}$. Find the pdf of Y when the distribution of X is

$$
f(x)=\frac{x^{2}}{3}, \quad-1<x<2
$$

Ans. $g(y)= \begin{cases}\frac{\sqrt{y}}{3}, & \text { if } 0<y<1 \\ \frac{\sqrt{y}}{6}, & \text { if } 1<y<4 . .\end{cases}$

Discuss Theorem 5.1-1 about the simulation of r.v.'s.

Exercises from textbook: Section 5.1: 1, 3, 4ab, 5, 10, 11, 15

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

If X_{1} and X_{2} are two continuous-type random variables with joint pdf $f\left(x_{1}, x_{2}\right)$, and if

$$
\left\{\begin{array}{l}
Y_{1}=u_{1}\left(X_{1}, X_{2}\right) \\
Y_{2}=u_{2}\left(X_{1}, X_{2}\right)
\end{array}\right.
$$

has the single-valued inverse

$$
\left\{\begin{array}{l}
X_{1}=v_{1}\left(Y_{1}, Y_{2}\right), \\
X_{2}=v_{2}\left(Y_{1}, Y_{2}\right),
\end{array}\right.
$$

then the joint pdf of Y_{1} and Y_{2} is

$$
g\left(y_{1}, y_{2}\right)=|J| f\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right), \quad\left(y_{1}, y_{2}\right) \in S_{1}
$$

where the Jacobian J is the determinant

$$
J=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right| .
$$

Example 5.2-1 Let X_{1} and X_{2} be independent random variables, each with pdf

$$
f(x)=e^{-x}, \quad 0<x<\infty
$$

Find the joint pdf of

$$
\left\{\begin{array}{l}
Y_{1}=X_{1}-X_{2} \\
Y_{2}=X_{1}+X_{2}
\end{array}\right.
$$

Find the pdf of Y_{1} and Y_{2}.

Example 5.2-2 Let X and Y be independent uniform r.v.'s over (0,1). Find the pdf of $Z=X Y$.

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Recall that if $X_{1}, X_{2}, \cdots, X_{n}$ are independent, then the joint pdf is the product of the respective pdf's (may not be identically distributed), namely,

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right) .
$$

If they follow the same distribution, then:

Definition 5.3-1 A random sample of size n refers a collection of independent and identically distributed (i.i.d.) random variables $X 1, \cdots, X_{n}$.

Example 5.3-1 Let X_{1} and X_{2} be independent Poisson random variables with respective means $\lambda_{1}=2$ and $\lambda_{2}=3$.
(a) Find $\mathbb{P}\left(X_{1}=3, X_{2}=5\right)$.
(b) Find $\mathbb{P}(X+Y=1)$.

Ans. (a) 0.0182 (b) 0.0337

Example 5.3-2 An electronic device runs until one of its three components fails. The lifetime (in weeks), X_{1}, X_{2}, X_{3}, of these components are independent, and each has the Weibull pdf

$$
f(x)=\frac{2 x}{25} e^{-(x / 5)^{2}}, \quad 0<x<\infty
$$

Find the probability that the device stops running in the first three weeks.
Ans. 0.660

Theorem 5.3-1 Say $X_{1}, X_{2}, \cdots, X_{n}$ are independent random variables and the random variables $Y=u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right) \cdots u_{n}\left(X_{n}\right)$. If $\mathbb{E}\left[u_{i}\left(X_{i}\right)\right], i=1,2, \cdots, n$, exists, then

$$
\mathbb{E}(Y)=\mathbb{E}\left[u_{1}\left(X_{1}\right) u_{2}\left(X_{2}\right) \cdots u_{n}\left(X_{n}\right)\right]=\mathbb{E}\left[u_{1}\left(X_{1}\right)\right] \mathbb{E}\left[u_{2}\left(X_{2}\right)\right] \cdots \mathbb{E}\left[u_{n}\left(X_{n}\right)\right]
$$

Theorem 5.3-2 Let $X_{1}, X_{2}, \cdots, X_{n}$ are independent random variables with respective means $\mu_{1}, \mu_{2} \cdots, \mu_{n}$ and variances $\sigma_{1}^{2}, \sigma_{1}^{2}, \cdots, \sigma_{n}^{2}$, then the mean and the variance of $Y=\sum_{i=1}^{n} a_{i} X_{i}$, where $a_{1}, a_{2}, \cdots, a_{n}$ are real constants, are, respectively,

$$
\mu_{Y}=\sum_{i=1}^{n} a_{i} \mu_{i} \quad \text { and } \quad \sigma_{Y}^{2}=\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}
$$

Corollary 5.3-3 Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample of size n from the distribution with mean μ and variance σ^{2}. Then the mean of random sample

$$
\bar{X}:=\frac{X_{1}+X_{2}+\cdots+x_{n}}{n}
$$

has the mean and variance as follows:

$$
\mu_{\bar{X}}=\sum_{i=1}^{n}\left(\frac{1}{n}\right) \mu=\mu \quad \text { and } \quad \sigma_{\bar{X}}^{2}=\sum_{i=1}^{n}\left(\frac{1}{n}\right)^{2} \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

Example 5.3-3 Let X_{1} and X_{2} be a random sample of size $n=2$ from the exponential distribution with pdf $f(x)=2 e^{-2 x}, 0<x<\infty$.
(a) Find $\mathbb{P}\left(0.5<X_{1}<1.0,0.7<X_{2}<1.2\right)$.
(b) Find $\mathbb{E}\left[X_{1}\left(X_{2}-0.5\right)^{2}\right]$.

Ans. (a) ... (b) ...

Example 5.3-4 Let X_{1}, X_{2}, X_{3} be three independent random variables with binomial distributions $b(4,1 / 2), b(6,1 / 3)$, and $b(12,1 / 6)$, respectively.
(a) Find $\mathbb{P}\left(X_{1}=2, X_{2}=2, X_{3}=5\right)$.
(b) Find $\mathbb{E}\left(X_{1} X_{2} X_{3}\right)$.
(c) Find the mean and the variance of $Y=X_{1}+X_{2}+X_{3}$.

Ans. (a) ... (b) ... (c) ...

Example 5.3-5 Let X_{1}, X_{2}, X_{3} be independent random variables that represent lifetimes (in hours) of three key components of a device. Say their respective distributions are exponential with means 1000, 1500, and 2000. Let Y be the minimum of X_{1}, X_{2}, X_{3} and compute $\mathbb{P}(Y>1000)$.

Exercises from textbook: Section 5.3: 2, 3, 4, 6, 10, $17,19$.

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Theorem 5.4-1 If $X_{1}, X_{2}, \cdots X_{n}$ are independent random variables with respective moment generating functions $M_{x_{i}}(t), i=1,2,3, \cdots, n$, then the moment-generating function of $Y=\sum_{i=1}^{n} a_{i} X_{i}$ is

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{x_{i}}\left(a_{i} t\right)
$$

In particular, the moment-generating function of $\bar{X}=\sum_{i=1}^{n}(1 / n) X_{i}$ is

$$
M_{\bar{X}}(t)=\prod_{i=1}^{n} M_{x_{i}}(t / n)
$$

Example 5.4-1 Let X_{1} and X_{2} have independent distributions $b\left(n_{1}, p\right)$ and $b\left(n_{2}, p\right)$. Find the moment-generating function of $Y=X_{1}+X_{2}$. How is Y distributed?

Example 5.4-2 Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$ be a random sample of size 5 from a geometric distribution with $p=1 / 3$.
(a) Find the moment generating function of $Y=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}$.
(b) How is Y distributed?
(c) Find mgf of \bar{X}.

Ans: (a) ... (b) ... (c) ...

Theorem 5.4-2 Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent chi-square random variables with $r_{1}, r_{2}, \cdots, r_{n}$ degrees of freedom, respectively. Then $Y=X_{1}+X_{2}+\cdots+X_{n}$ follows $\chi^{2}\left(r_{1}+r_{2}+\cdots+r_{n}\right)$.

Corollary 5.4-3 Let $Z_{1}, Z_{2}, \cdots, Z_{n}$ be independent standard normal distributions, $N(0,1)$, random variables, then $W=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{n}^{2} \sim \chi^{2}(n)$.

Corollary 5.4-4 If $X_{1}, X_{2}, \cdots, X_{n}$ be independent and have a normal distributions $N\left(\mu_{i}, \sigma_{i}^{2}\right), i=1,2, \cdots, n$, respectively, then

$$
W=\sum_{i=1}^{n} \frac{\left(X_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}} \sim \chi^{2}(n)
$$

Exercises from textbook: 5.4.1, 5.4-3, 5.4.4, 5.4-7, 5.4-8, 5.4-15.

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Theorem 5.5-1 If $X_{1}, X_{2}, \cdots, X_{n}$ are n mutually independent normal variables with means $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ and variances $\sigma_{1}^{2}, \sigma_{2}^{2}, \cdots, \sigma_{n}^{2}$, respectively, then the linear function

$$
Y=\sum_{i=1}^{n} c_{i} X_{i} \sim N\left(\sum_{i=1}^{n} c_{i} \mu_{i}, \sum_{i=1}^{n} c_{i}^{2} \sigma_{i}^{2}\right)
$$

Corollary 5.5-2 If $X_{1}, X_{2}, \cdots, X_{n}$ are observations of a random sample of size n from the normal distribution $N\left(\mu, \sigma^{2}\right)$, then the distribution of the sample mean $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$ follows $N\left(\mu, \sigma^{2} / n\right)$.

Theorem 5.5-3 Let $X_{1}, X_{2}, \cdots, X_{n}$ are observations of a random sample of size n from the normal distribution $N\left(\mu, \sigma^{2}\right)$. Then the sample mean

$$
\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and the sample variance

$$
S^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

are independent. Moreover,

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
$$

Example 5.5-1 Let X equal the widest diameter (in millimeters) of the fetal head measured between the 16th and 25th weeks of pregnancy. Assume that the distribution of X is $N\left(\mu=46.58, \sigma^{2}=40.96\right)$. Let \bar{X} be the sample mean of a random sample of $n=16$ observations of X.
(a) Give the value of $\mathbb{E}(\bar{X})$ and $\operatorname{Var}(\bar{X})$.
(b) Find $\mathbb{P}(44.42 \leq \bar{X} \leq 48.98)$.
(c) How is $W=\sum_{i=1}^{16} \frac{\left(X_{i}-\bar{X}\right)^{2}}{40.96}$ distributed?
(d) Find $\mathbb{P}[6.262<W<30.58]$.

Ans: (a) ... (b) ... (c) ... (d) ...

Theorem 5.5-4 (Student's t distribution) Let

$$
T=\frac{Z}{\sqrt{U / r}}
$$

where Z is a random variable that is $N(0,1), U$ is a random variable that is $\chi^{2}(r)$, and Z and U are independent. Then the pdf of T is

$$
f(t)=\frac{\Gamma((r+1) / 2)}{\sqrt{\pi r} \Gamma(r / 2)} \frac{1}{\left(1+t^{2} / r\right)^{(r+1) / 2}}, \quad-\infty<t<\infty .
$$

This distribution is called Student's t distribution.

We can use the results of Corollary 5.5-2 and Theorem 5.5-3 and Theorem 5.5-4 to construct an important T random variable. Given a random sample $X_{1}, X_{2}, \cdots, X_{n}$ from a normal distribution, $N\left(\mu, \sigma^{2}\right)$, let

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { and } \quad U=\frac{(n-1) S^{2}}{\sigma^{2}}
$$

Then the distribution of Z is $N(0,1)$ by Corollary 5.5-2. Theorem 5.5-3 tells us that the distribution of U is $\chi^{2}(n-1)$ and that Z and U are independent. Thus,

$$
T=\frac{\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}} /(n-1)}}=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

has a Student's t distribution with $r=n-1$ degrees of freedom by Theorem 5.5-4. We use this T to construct confidence intervals for an unknown mean μ of a normal distribution.

Exercises from textbook 5.5-1, 5.5-2, 5.5-3, 5.5-4, 5.5-5, 5.5-6, 5.5-9.

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Theorem 5.6-1 (Central Limit Theorem) If \bar{X} is the mean of a random sample $X_{1}, X_{2}, \cdots, X_{n}$ of size n from a distribution with a finite mean μ and a finite positive variance σ^{2}, then the distribution of

$$
W=\frac{\bar{X}-\mu}{\sqrt{\sigma} / n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sqrt{n} \sigma}
$$

is $N(0,1)$ in the limit as $n \rightarrow \infty$.

When n is "sufficiently large," a practical use of the central limit theorem is approximating the cdf of W, namely,

$$
\mathbb{P}(W \leq w) \approx \int_{-\infty}^{w} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z=\Phi(w) .
$$

Example 5.6-1 Let \bar{X} be the mean of a random sample of size 12 from the uniform distribution on the interval $(0,1)$. Approximate $\mathbb{P}(1 / 2 \leq \bar{X} \leq 2 / 3)$.

Example 5.6-2 Let X equal the weight in grams of a miniature candy bar. Assume that $\mu=\mathbb{E}(X)=24.43$ and $\sigma^{2}=\operatorname{Var}(X)=2.20$. Let \bar{X} be the sample mean of a random of $n=30$ candy bars.
(a) Find $\mathbb{E}(\bar{X})$;
(b) Find $\operatorname{Var}(\bar{X})$;
(c) Find $\mathbb{P}(24.17 \leq \bar{X} \leq 24.82)$ approximately.

Ans: (a) ... (b) ... (c) ...

Exercises from textbook: 5.6-2, 5.6-4, 5.6-6, 5.6-7, 5.6-9.

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

For sufficiently large n the binomial distribution, $b(n, p)$ can be approximated by normal distribution $N(n p, n p(1-p))$.

The rule for "sufficiently large" is

$$
n p \geq 5 \text { and } n(1-p) \geq 5
$$

Example 5.7-1 Let Y be $b(36,1 / 2)$. Find $\mathbb{P}(12<Y \leq 18)$, approximately. Ans. ≈ 0.5329 and the exact answer is 0.5334 .

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

Chapter 5. Distributions of Functions of Random Variables

§ 5.1 Functions of One Random Variable
§ 5.2 Transformations of Two Random Variables
§ 5.3 Several Random Variables
§ 5.4 The Moment-Generating Function Technique
§ 5.5 Random Functions Associated with Normal Distributions
§ 5.6 The Central Limit Theorem
§ 5.7 Approximations for Discrete Distributions
§ 5.8 Chebyshev Inequality and Convergence in Probability
§ 5.9 Limiting Moment-Generating Functions

